在工业废水生物处理系统中,微生物通过自身的新陈代谢作用将污染物降解为无毒、无害的小分子物质。但现代工业排放的大量污染物对微生物有较强的毒害和抑制作用。在生物硝化工艺中,由于硝化菌生长率缓慢、产率低且为自养型细菌,就会导致硝化反应启动时间长、污泥流失严重或遭受负荷冲击难恢复。此时,可采用生物增效技术作为有效的辅助手段。
生物增效技术是一种通过投加从自然界筛选的优势菌种而达到去除某一种或某一类有害物质,从而提高系统处理效率的技术。通过这种技术,可以快速增加系统中的有效目标生物量,以强化系统对某一特定或特殊污染物的处理能力。该技术可应用于废水处理系统中的有机物降解、氨氮去除、系统快速启动、故障恢复、消除富营养化等方面。
本文以陕西渭河煤化工集团有限责任公司三期废水处理装置为例,详细介绍生物增效技术在煤化工废水生物处理系统中有效提高氨氮去除效果的应用。
1、污水处理系统概况
1.1 装置概况
陕西渭河煤化工集团三期废水处理装置主要采用SBR废水处理工艺。该废水处理系统于2011年8月底投入运行,设计规模为120m3/h。废水主要为煤气化装置产生的高氨氮废水以及甲醇合成精馏装置产生的高COD废水、地面冲洗水、初期雨水等。实际废水总量约为130m3/h,其中煤气化装置产生的高氨氮废水约95m3/h,甲醇合成精馏装置产生的高COD废水约15m3/h,地面冲洗水20m3/h。
1.2 存在的问题
三期废水处理装置自2011年8月建成运行以来,经过为期三个月调试、污泥驯化培养,随后不断提高负荷,自2012年4月整个装置满负荷运行,出水达标。2016年开始根据公司生产运行实际需要,三期煤气化装置双炉运行,气化废水量由95m3/h增加至120m3/h,气化煤种也发生改变,气化废水长期NH3-N≥400m3/h,至2016年4月份,长时间的超负荷运行,导致废水处理装置氨氮去除效果变差,出水氨氮值严重超标,2016年4月该废水处理装置生化处理进水和出水氨氮。
系统硝化反应效果基本没有,氨氮去除能力低,并且SBR池曝气阶段DO较低,pH值为6.5-7.2,镜检发现污泥活性不好,沉降性能差。
2、硝化菌使用
2.1 投加位置
硝化菌种在2#、4#两组出水效果差的SBR池使用,1#、3#、5#、6#池正常进水。
2.2 使用周期和投加量
4月28日开始生物增效剂在2#SBR池和4#SBR池循环曝气阶段各投加6桶×4.5kg•桶-1,减少进水量至5min,闷爆两个周期;从第三个循环后各投加3桶×4.5kg•桶-1,每次增加进水时间5min,连续投加3个循环,每池共计投加15桶共计58.5kg生物增效剂。第六个循环水量调整至正常负荷。
2.3 其他主要工艺参数控制
2.3.1 营养物
2#SBR池和4#SBR池每循环厌氧阶段,各投加甲醇15min。
2.3.2 pH值
生物增效剂投加前,SBR系统由于硝化反应受到抑制,SBR池的pH值均为6.5-7.2。为了保障硝化菌正常进行硝化-反硝化反应,2#SBR池和4#SBR池每进水阶段投加30%液碱,配合投加Na2CO3,调节pH值在7.5-8.0。
2.3.3 溶解氧
在运行中,维持曝气阶段DO:2-4mg/l。
3、数据及分析
由图2可以看出,SBR池进水氨氮数值高且波动大。硝化菌从4月28日开始在2#SBR池和4#SBR池投加使用,前期大量投加进行启动强化并闷爆,随着硝化菌逐渐适应2#SBR池和4#SBR池生化系统的水质特点,投加量逐步减少,出水氨氮开始出现稳定的下降,5月10号2#SBR池的出水氨氮值降至25mg•L-1以下,出水氨氮值为21.3mg•L-1;5月12号4#SBR池的出水氨氮值降17.4mg•L-1,自此进入硝化菌效果的稳定期。至到5月15号,共计5d的稳定期,2#SBR池和4#SBR出水氨氮值均小于25mg•L-1的标准,小为13.51mg•L-1,符合预期要求,也可以确定2#SBR池和4#SBR的硝化-反硝化反应系统已快速建立(15天时间氨氮去除率69%提高到94%),达到25mg•L-1以下,硝化系统抗冲击能力增强,故障恢复快。
通过对2#SBR池和4#SBR池使用生物增效剂前后的污泥镜检对比后发现,在使用生物增效剂之前,系统中存在的活性污泥其胶团较稀,且有大量的丝状菌团,较少出现原后生物。而使用增效剂后,菌团都变得密实,消除了丝状菌团,出现各种纤毛虫的原生物。经过一段时间2#SBR池和4#SBR池出水指标的连续监测,当遇到非正常的冲击后,系统都能得到正常的恢复,不会受到影响。生物增效技术的运用,其抗冲击能力增强,活性污泥的性能得到的改变,有效的提高了其处理效率。